

 Navigation

 	
 index

 	
 next |

 	Strange Loop 2012 Notes

Strange Loop 2012

Strange Loop [https://thestrangeloop.com/] is a conference held in St Louis, Missouri. Topics
include emerging languages, concurrent and distributed systems, new
database technologies, front-end web, and mobile apps.

These are Nathan Yergler’s notes from Strange Loop 2012 and the
Emerging Languages Camp. You can find the ReStructured Text source for
these notes in the git repository [https://github.com/nyergler/strange-loop-2012].

	Emerging Languages Camp
	Symbiotic Languages: Transpiling into JavaScript

	Bandicoot: Code Reuse for the Relational Model

	Elm: Making the Web Functional

	Plan: A New Dialect of Lisp

	Clever, Classless, and Free?

	The Reemergence of Datalog

	Roy

	Julia: A Fast Dynamic Language for Technical Computing

	Rust

	Grace: an open source educational OO language

	Elixir: Modern Programming for the Erlang VM

	Visi: Cultured and Distributed

	Monday
	In Memory Databases

	Monad examples for normal people

	Functional Design Patterns

	A Type Driven Approach to Functional Design

	A Whole New World

	The High Order Rubyist

	Building an Impenetrable ZooKeeper

	Principles of Reliable Systems

	Engineering Elegance: The Secrets of Square’s Stack

	Tuesday
	Computing Like the Brain

	Behind the Mirror

	Apache Cassandra Anti-Patterns

	Programming by Voice: Becoming a Computer Whisperer

	Eventually Consistent Data Structures

	Expressing Abstraction - Abstracting Expression

	Taking Off the Blindfold

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

Emerging Languages Camp

	Date:	2012-09-23

	Location:	Marriott Union Station, St Louis, Missouri

Wanted to provide a venue for talking about new languages that wasn’t
for people who had completed a PhD or were working on one.

	Symbiotic Languages: Transpiling into JavaScript

	Bandicoot: Code Reuse for the Relational Model

	Elm: Making the Web Functional

	Plan: A New Dialect of Lisp

	Clever, Classless, and Free?

	The Reemergence of Datalog

	Roy

	Julia: A Fast Dynamic Language for Technical Computing

	Rust

	Grace: an open source educational OO language

	Elixir: Modern Programming for the Erlang VM

	Visi: Cultured and Distributed

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Emerging Languages Camp

Symbiotic Languages: Transpiling into JavaScript

	Authors:	Jeremy Ashkenas

	Time:	9:30 am - 10:00 am

	Session:	https://thestrangeloop.com/sessions/symbiotic-languages-transpiling-into-javascript

“I like to think of this as the place where the back wood medicine folk
of programming languages get to come out of the woodwork and talk
about what they’re doing.”

Only a few people here since the first emerging languages camp, which
was in a cramped room in the first floor of OSCON. What made it great
was discussion, people asking questions. So do that.

Here today to talk about Symbiotic Language: languages that “compile”
to the source code of an existing language. These are interesting
because writing VMs is really, really hard, and we’ve developed some
strong VMs that might be 15-20 years old, but they’re still useful.
HotSpot/Java, V8/Dart. Using an existing VM means you get to pick some
of the properties of the host language you think are useful, and
cherry pick those, and leave behind the ones you don’t want.

There’s a spectrum of options between compiling and *trans*piling.
Transpiling means just translating some language to the source (or
occassionaly the byte code) of the target, host language. Retains a
lot of the semantics of the host language, since you’re working
primarily with keywords and tokens. Once you start to change the
semantics (i.e., by implementing “special functions” in your language
that the new language calls into to implement). CoffeeScript tries not
to add these “features”, because they want to stay close to the
JavaScript semantics.

Charlie Nutter, who works on JRuby, has explored this: he implemented
99.5% of the Ruby semantics on Java. He’s also tried the other
approach: implementing Java semantics with Ruby code.

CoffeeScript maintains a wiki of different languages that can be
compiled into JavaScript. It’s a long list!

Jeremy’s experience is primarily around CoffeeScript: “It’s Just
JavaScript”. JavaScript has proven remarkably versatile and robust for
something designed in about ten days. CoffeeScript transpiles to that,
and has come a long way since it was first developed during the first
Emerging Langauges Camp [shows graph of StackOverflow vs GitHub from
RedMonk; CoffeeScript has grown to something like #11 in two years].

So the choice is what you want to preserve vs deviate. One thing they
can’t do is negative array indices: you’d need to inject some function
into the transpiled source code to support it, since you don’t have
nearly enough information at compile time.

One thing they can do is “everything is an expression”. Lots of
existing Javascript is expressions, but there are also control flow
objects that aren’t in plain JavaScript. CoffeeScript enables this by
function wrapping: shows examples of using a complex if, a try/catch,
and a loop as an expression.

The other semantic change CoffeeScript makes is the addition of
classes, which CoffeeScript transpiles into the appropriate prototype
declaration. You can also do interesting things like executable class
bodies, which allows you to do interesting things like change the body
of a class based on some value. [shows example of a Pirate class that
speaks in English if century > 1700, otherwise Spanish]

The politics of programming languages are such that even if you build
something interesting, there are significant barriers to adoption: “I
have to use the JVM”, “It doesn’t work on the web”, etc. By
transpiling you give people a shim to start playing with your new
language. CoffeeScript is a really interesting case study of this:
it’s come very far in two years without corporate support or backers.

It used to be that you learned a new language to program on a new
platform. With symbiotic languages, we’re building the same sort of
systems we were already building, but hopefully doing so in a more
expressive, clean, powerful way. This means our code has two
audiences: other programmers, and other programmers in the target
language [I think I got this right] – and by extension, the target
platform compiler.

});

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Emerging Languages Camp

Bandicoot: Code Reuse for the Relational Model

	Authors:	Ostap Cherkashin

	Time:	10:00 am - 10:30 am

	Session:	https://thestrangeloop.com/sessions/bandicoot-code-reuse-for-the-relational-model

	Link:	http://bandilab.org

	Slides:	https://github.com/strangeloop/strangeloop2012/blob/master/slides/CherkashinChrobak-Bandicoot.pdf?raw=true

Ostap has been working on Bandicoot for about four years, mostly part
time, but recently their time has been increasing. Bandicoot is open
source, and hosted on github. Bandicoot began because Ostap was
writing code in many languages including Java and SQL. He was
fascinated because when he wrote something in SQL, you could write
something once and it would work with no records, one record,
thousands, or millions of records. And there’s been lots of research
on relational systems: fast joins, etc. At the same time there’s been
a lot of research on concurrency and control. But we’re using a 40
year old language (SQL) with poor re-use.

Bandicoot is a set based programming system that aims to improve the
interface to relational data. Bandicoot is a new language and new
runtime for doing this.

Introduces a test case he’s going to use: two CSV files, one of books,
one of discounts. Example: want to apply discount and find all books
with a price greater than 100.0$, and then list all the genres.

Bandicoot runs over HTTP: you write a program, and the runtime exposes
the functions over HTTP.

Variables define sets of data, and committed data persists across runs
of Bandicoot. Bandicoot understands CSV, so you can post data to a
function to store data.

Bandicoot supports eight relational algebra operators: four unary,
four binary. The select operator allows you to apply a boolean
filter to some set of data. join is a binary operator that takes
two sets and joins them into a single set based on some relationship.
The project operator selects distinct subsets from a set.

By allowing you to define “functions” that apply operators to sets,
Bandicoot provides a way to re-use code and composite functions.
Everything is a relation is Bandicoot, so you can easily pass things
around for composition.

Working On:

Attribute Sets allow you to define your types (schemas) in terms of
composition, as well.

Modules for grouping functionality together.

http://github.com/bandilab

http://mingle.io (try it online)

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Emerging Languages Camp

Elm: Making the Web Functional

	Authors:	Evan Czaplicki

	Time:	10:30 am - 11:00 am

	Session:	https://thestrangeloop.com/sessions/elm-making-the-web-functional

	Link:	http://elm-lang.org/

	Slides:	https://github.com/strangeloop/strangeloop2012/blob/master/slides/Czaplicki-ElmMakingTheWebFunctional.pdf?raw=true

The focus is making the web functional, but the real question is “why
elm?”. It’s inspired by the Kubler-Ross model: Acceptance, Denial,
Anger, Bargaining, Depression.

Wants to:

	make GUI programming more

pleasant: reduce the time/headache from idea to reality, make people
ask “How was it not this way before?”

	Also wants to make programming

more accessible: no installation required, interactive compiler
online. Quick visual feedback. Examples! Easy path from novice to Expert.

These goals are accomplished through:

	functional GUIs: enforces safe

programming practice, plays nice with concurrency, beauty/elegance.

	Accessibility: target the web, be open source, great
resources/examples

“But aren’t GUIs imperative?” is the objection. Perhaps, but there’s a
lot to learn from functional programming, and the fact that GUIs have
been imperative is an artifact of poor tools. Elms is an effort to get
the tools there.

A GUI is made up of computations, graphics, and reactions. The
question is how to do each of these in a functional way. We know how
functional computation works: it’s pretty well understood. Graphics
have historically been very imperative, but we’ve been moving to
higher level abstractions, from pixels in a matrix to triangles, to
OpenGL, etc. The idea of more abstraction is to reduce the number of
steps between “I want a pentagon” and “I have a pentagon”.

Elm works with Elements: rectangular “things” we put on the
screen. Some basic functions that return Elements include plainText,
Image, fittedImage. Elm also supports Markdown for text formatting.

Elm attempts to make things that are conceptually simple simple to
program. So things like alignment (“put this in the middle”) or flow
(“put these one after another”) are simple to express (unlike, say,
HTML).

[shows demonstrations, including Collage, which lets you composite
things easily.]

So graphics can be done in a high-level, compositional, functional
manner. But how do you handle reactions? If a value is immutable (in a
functional language), how do you deal with user input? Elm introduces
the idea of time-varying values: a stream of input like the mouse
position. By introducing this idea, you also get some
signaling/auto-update: things that depend on the mouse position will
automatically update when it does. Elm is functional, so you can
change the way things react/interact without changing the way the
graphics are drawn.

Elm can be used for writing games: imperative game programming is
pretty flexible (pixel flipping, etc) – too flexible in the opinion
of the author. Elm requires you to use good structure. [Demonstrates
Pong using Elm] Every Elm game must have three parts: a model, the
state, and the view. You might think of this as the functional
equivalent of MVC.

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Emerging Languages Camp

Plan: A New Dialect of Lisp

	Authors:	David Kendal

	Time:	11:00 am - 11:30 am

	Session:	https://thestrangeloop.com/sessions/plan-a-new-dialect-of-lisp

“A look at the future direction of programming languages.”

Starts by talking about “every programming language ever”. We usually
think about languages in terms of “System” (fast, low-level, static,
compiled, “fast”) vs “Scripting” (high-level, dynamic, interpreted
“slow”). But in the last few years it’s become more common to write
“real” apps in “scripting” languages like Ruby, etc. Maybe there’s a
third side: Embedded Languages. Mid-level, static/dynamic, “latched
fence” models, and often quite fast. Plan is an attempt at writing a
fast, mid-level Lisp.

So how do languages become successful? A lot of people think that
success is correlated to having a large number of libraries. But there
are a small number of built-in libraries that are actually really
important for composing larger systems: HTTP, JSON, etc in modern
systems. And a successful language will have a way to distribute
modules (i.e., CPAN).

Traditionally Lisp didn’t support a lot of polymorphism for types, and
you still see this in Scheme. Plan addresses this by doing pattern
matching for types, and tagging objects with type metadata. Plan would
like to provide a comfortable path for people working today in Python
and Ruby into Lisp-i-ness.

Some familiar syntax can be transparently converted to Lisp syntax:

a[b]

 => (get-prop a b)

(set a[b] c)

 => (set (get-prop a b) c)

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Emerging Languages Camp

Clever, Classless, and Free?

	Authors:	
	Håkan Råberg

	Time:	11:30 am - 12:00 pm

	Session:	https://thestrangeloop.com/sessions/clever-classless-and-free

	Slides:	https://github.com/strangeloop/strangeloop2012/blob/master/slides/Raberg-CleverClasslessAndFree.pdf?raw=true

Invited to speak, and decided he wanted to talk about some experience
over the last few years. He comes from a consulting background, and
for a while had to live in the Java world. If not for Clojure, he’d
probably still be in the Java world. As such, he was a pragmatist.
Extreme programming background: TDD yourself to freedom, testing will
save you. Reached the conclusion that there are some mistakes in this
approach, and decided to try to move from the pragmatist side of
things to the “other” end. So he’s taking two years off to explore
this.

Enumerable.Java

(Clever)

Took a break in 2010 from corporate job, traveling around Asia,
attempting to program while he traveled. Found himself in Kuala
Lumpur, near the end of his year of travel, and now it’s time to start
programming :). Decided he wanted to solve the problem of lambdas in
Java. And he did this by working on porting the enumerable module
from Ruby to Java.

map(xs, lambda(x, x.toUpperCase()));

But x and lambda are static things that don’t really do anything:
toUpperCase is the part that you actually care about.

[Leftover Lambda, Bill Hoyt]

At runtime you create a new class, move the byte codes over to the new
class, and replace the local references to the new class:

map(xs, new Fn1<String, String>()
{
 public String call(String x) {
 return x.toUpperCase();
 }
 });

This is basically “lambdas for Java 5”: load time or AOT compilation.
Implemented via ASM Bytecode Macro, and triggered by annotated static
methods. But no Java syntax expansion. And using JRuby, he was able to
make it RubySpec 1.87 compliant.

(enumerable.org)

shen.clj

(Classless)

Mark Tarver’s Shen: A portable version of Qi II, consisting of a
kernel lisp (klambda) of 46 primitives. Mark provided two ports: GNU
CLISP and Steel Bank Common Lisp. There have been multiple ports:
Javascript, Clojure (2), Haskell, JVM. shenlanguage.org

Now

(Free)

As software increasingly structures the contemporary world, curiously,
it also withdraws, and becomes harder and harder for us to focus on as
it is embedded, hidden, off-shored or merely forgotten about.

– David M. Berry

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Emerging Languages Camp

The Reemergence of Datalog

	Authors:	Michael Fogus

	Time:	12:40 pm - 1:20 pm

	Session:	https://thestrangeloop.com/sessions/the-reemergence-of-datalog

	Slides:	https://github.com/strangeloop/strangeloop2012/blob/master/slides/Fogus-Datalog.pdf?raw=true

Also known as “Return of the Living Datalog”. Michael likes turtles.

A common way we look at data is as a “rectangle” (table).
Rectangulation falls down a bit when describing relationships, sparse
data, multi-valued, and leads to Place-Oriented Programming (PLOP).

Dealing with data in Java often involves lots of code that obscures
what the data actually is: you write a lot of code to accomplish what
you want, and mistake the menu for the meal. So Java programmers try
to make the data more familiar/comfortable, by mapping it into what
they understand: classes. “ORMG!” This reinforces a false dychotomy
between code and data.

So how do we unify code and data? Unification. With unification you
“punch holes” in your data and provide places for variables. Then you
can try to fit data in, like a key in a lock. Unification diverges
from pattern matching because it can leave variables there: you don’t
have to match everything, or the unification can introduce new
variables.

Unification closes the gap between data and code, but doesn’t quite
get us to the point where you can use the data in what we’d normally
consider a program. Prolog is one of the ways we try to close that gap
completely. Prolog programs assert facts, and use rules to reason: X
spawned Y, and if A spawned B, B is a descendant of A. This is great:
our data can now sort of be treated as code. But it has a few
problems: clause-order dependence, non-termination, and imperative
infection.

Datalog is a query language (not general purpose, not Turing
complete), very explicit with its bindings, and relatively simple.
Datalog began its life in 1977, and work was done until 1995 when it
was declared “not relevant”. In 2002, though, it began to gain use as
a way to describe security and topologies.

Datalog is a logic programming language with recursive queries and
recursive joins. Datalog works off a simplified Entity Attribute Value
(EAV) model. This EAV model means Datalog is suitable for querying
sparse datasets.

Datomic is an implementation of Datalog which removes the need for a
database, and introduces the notion of “time travel”. Instead of
always specifying a database, Datomic allows you to pass in a set of
raw data. This makes it useful to test your queries. Keeping track of
time in a relational database can be tricky. Datomic allows you to
specify a fourth field in the tuple as a time field (actually
transaction). This allows Datomic to perform total ordering of
transactions, and allows you to bound queries by time.

Daedalus is also a Datalog implementation with a notice of time,
although it’s different from Datomic. Because it’s designed to support
distributed processing, Daedulus is based on a tick model (with some
accommodation for unreliable network connections).

A third implementation, Cascalog, is written in Clojure, and provides
map/reduce processing. This also means you have order independence.

Bacwn is another Datalog (also Clojure based?) which provides
negation. Negation utilizes a NOT predicate, which lets you take the
same query and return the logical “inverse”. [Shows example using
MST3K characters, querying first for all characters on the SoL, then
those not on the SoL.]

So what about query time? Query plans provide one way to do things,
but we don’t get any guarantee that that’s what the engine will do.
You can hint your query, but that’s a black art. Prolog requires you
order for termination, but Datalog requires that you order for speed
(many naive Datalog queries will run slowly). Pluggable optimizers may
be the way forward: plug in an optimizer than knows your own data
without impacting other Datalog optimization techniques.

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Emerging Languages Camp

Roy

	Authors:	Brian McKenna

	Time:	1:20 pm - 2:00 pm

	Session:	https://thestrangeloop.com/sessions/roy

	Link:	http://roy.brianmckenna.org/

Roy is an altJS language (http://altjs.org). While he was compiling
the list of languages, he played with lots of them, and none of them
satisfied his

Writing correct JavaScript is hard, partially because everything is
mutable. So Roy is CoffeeScript meets OCaml meets Haskell.

console.log “Hello World”

console.log (“Hello World”);

Roy is statically typed:

console.log ("40" + 2)

Won’t work in Roy – incompatible types.

let f x : Number = x

Defines a function f which takes a Number x and returns a Number
(inferred in this case).

Roy preserves comments in your source.

You can also do “static duck typing”: extensible records. You can
specify which properties an object needs to have, then anything with
those properties can be used.

This lets Roy provide pattern matching.

Roy provides a module system. When compiling to a browser module,
those are assigned to the global scope. But you can also compile to
CommmonJS, which will use the require system, as well as an async
module def.

Future of Roy

	Functional Lenses

	Deferred type errors

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Emerging Languages Camp

Julia: A Fast Dynamic Language for Technical Computing

	Authors:	Stefan Karpinski

	Time:	2:00 pm - 2:40 pm

	Session:	https://thestrangeloop.com/sessions/julia-a-fast-dynamic-language-for-technical-computing

	Link:	http://julialang.org/

Julia is a fast, dynamic language for technical computing. “Technical
Computing” is sort of a made up term, but it includes languages like
Matlab, Maple, Mathematica, R, SciPy, etc. There are at least forty
technical computing languages. Julia had three feature goals: dynamic
language, sophisticated parametric type system, and multiple dispatch.
Existing languages have some of these, but the combination is somewhat
unique in Julia.

Julia can be Matlab-like: code is defined in functions, [shows
example]. But you can also write lower-level, non-vectorized code
[shows example of their quicksort micro-benchmark]. Julia supports
distributed computation, and macros for constructs _like_ distributing
computation.

Shows the difference between how Python and C store arrays. C requires
that arrays have a single type, so you can store (say) the list of
floating point things in contiguous memory. Python lets you do
anything in the list, so it stores a list of pointers to the elements.
Julia wanted to be able to store the information contiguously in
memory, and still have flexibility. This means you can’t change a type
once it’s declared: you can’t make it bigger, add fields, etc. [Did I
mishear that this means there’s no/limited sub-classing?]

Discussion of how Julia handles multiple dispatch. Uses explicit
promotion instead of overloading.

[Live coding demo of hypothetical Modular Int type.]

Julia performs very well compared to Python, Matlab, Octave, R. Julia
runs on LLVM, so fast to start with, and they’re working on performance.

Julia performs no static type checking.

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Emerging Languages Camp

Rust

	Authors:	David Herman

	Time:	2:40 pm - 3:20 pm

	Session:	https://thestrangeloop.com/sessions/rust

	Link:	http://www.rust-lang.org/

	Slides:	https://github.com/strangeloop/strangeloop2012/blob/master/slides/elc/Herman-Rust.pdf?raw=true

A Haiku to describe Rust:

a systems language

pursuing the trifecta

safe, concurrent, fast

Mozilla Research is interested in the platform side of the web: Boot
To Gecko, for example. And at a lower level, thinking about how they’d
design things for the future. Looking at a set of tabs in a browser,
you think about them in terms of security and sandboxing, but Mozilla
Research thinks about them in term of threading, performance, etc:
like the browser is an operating system that provides a bunch of stuff
for “apps”.

So why Rust? Mozilla’s codebase is huge, and lots of C++, which is
not designed for security, etc. Started working on Rust in 2009, self
hosting on LLVM in 2011. Rust is the love child of C++, Erlang, and
Caml, and Haskell.

Fast

Sometimes abstractions remove duplicated code, but introduce
performance issues. Rust strives to provide zero cost abstractions.
For example, lambdas are aggressively inlined, and you can annotate
code to push the compiler towards inlining. Rust also provides C++
like structured data: direct access instead of indirection. [Shows
example of a Point(x,y) struct. You can deal with the
indirection if you needed. Rust is currently calling these “borrowed
pointers” to reinforce the idea that they’re on the stack, and not
necessarily long lived. Rust also provides syntax for allocating on
the heap, when needed. These can be passed as borrowed pointers, if
needed.

Four ways to use a structure:

	Directly

	Borrowed Pointer (*)

	Heap Pointer (&)

	Unique (Owned) Pointers (~)

You can “move” ownership of pointers; doing so effectively eliminates
the local variable so you no longer have access.

Concurrent

Actor-like language, so you allocate tasks. When you create a stack,
you have a small stack allocated, which will dynamically grow. Task
creation is pretty cheap. Tasks can not have pointers to data in other
tasks, so they can be garbage collected independently. [Sounds like
they’re roughly the same as processes.] Tasks can allocate unique
pointers, which are created on the shared heap. When a Task needs to
communicate with another Task, it simply moves the pointer to the
other Task. This pointer pass is very cheap. And because it’s a unique
pointer, you’re guaranteed that no other Task points to it.

Safe

Rust has generics (parametric polymorphism). “Classes” are flat
structs, and you can attach methods after the fact.

You can declare traits which provide a way to do Type Classes
[feels like interfaces to me].

ARCs (“Automic Reference Counting”) structs require that the data
within it must be deeply immutable. These can be freely shared between
Tasks.

Even though Rust is designed for safety, there’s no such thing as a
completely safe language: every language has a way to do something
“unsafe”. Rust has that, too, but they’re branded with a huge hazmat
sign, and if you touch them, your code is branded unsafe.

http://smallcultfollowing.com/babysteps

http://pcwalton.github.com/

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Emerging Languages Camp

Grace: an open source educational OO language

	Authors:	James Noble

	Time:	3:50 pm - 4:30 pm

	Session:	https://thestrangeloop.com/sessions/grace-an-open-source-educational-oo-language

	Link:	http://gracelang.org/

	Slides:	https://github.com/strangeloop/strangeloop2012/blob/bab046557f9b9f8c90c8152baa09a21fedd0405d/slides/elc/Homer-GraceAnOpenSourceEducationalOOLanguage.pdf?raw=true

Grace is an open source educational OO language.

The languages currently used to teach programming are adequate, but
they’re tailored for industrial sized problems, with features to
match. These aren’t always what’s needed for teaching.

Grace is targeted at CS1 or CS2 students, with lots of flexibility for
how the instructor wants to teach things. This means optional types to
support different teaching orders. In Grace, simple programs should be
simple. They should have an understandable semantic model, and it
should be a general purpose language. [This sounds a lot like my
experience teaching: minimal magic is important when you’re teaching
people how to program.] Grace programs are not supposed to have
“incantations” [OK, it’s exactly what Vern & I concluded.]
Incantations, like “public static void” in your first Java program
aren’t meaningless, but they don’t mean anything to the beginning
programmer. This leads to things like students marking every method
they write public static, which is not what they want.

Grace is not exciting like other languages discussed today. It’s
taking old ideas and trying to combine them for a particular purpose.

Grace distinguishes mutable and immutable bindings through the use of
different keywords (var, def, respectively). And you can teach
either functions or objects first, depending on the pedagogy.

Grace has optional typing, and when used, types come after the name.
Things that are “more important” come closer to the beginning of the
line.

Grace supports “method requests”: everything (operators, calls, print,
control structures, everything) comes down to a method request. This
undergirds the consistent semantic model: no exceptions to explain to
beginning programmers. This also implies that there are blocks and
lambdas, although you don’t have to expose students to them. Finally,
because they’re method requests, you can add your own control
structures for students (i.e., a while block with an explicit
invariant).

method while(c: Block) do(a: Block) {
 c.apply.ifTrue {
 ...
 }
}

Grace provides data hiding support for objects using annotations:

def pt = object {
 var x := 2
 var y is readable := 3
 var z is public, readable, writable := 4
}

Trying to access x will give no such methods; y will give requested
confidential method. And you can also add your own annotations
[consistent semantic model].

Grace is designed to prevent null pointer exceptions, to allow
students to focus on the basics of writing programs.

Grace is still under development: nothing is set in stone, but some
things are “stone adjacent”.

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Emerging Languages Camp

Elixir: Modern Programming for the Erlang VM

	Authors:	Jose Valim

	Time:	4:30 pm - 5:10 pm

	Session:	https://thestrangeloop.com/sessions/elixir-modern-programming-for-the-erlang-vm

	Link:	http://elixir-lang.org/

Why Elixir? First, the Erlang virtual machine is great, so Elixir attempts to
expose the great parts of that VM in a different way, while addressing
some of the shortcomings of the host language. The Erlang VM was built
for concurrency and for hot deployment of updates. Second, multi-core
is here to stay. Erlang was built for concurrency, and a lot of the
features that make it great at that also make it great at supporting
multi-core hardware.

The goals of Elixir are:

	Productivity

Elixir attempts to increase productivity by eliminating boilerplate
code. Everything in Elixir is an expression, which makes the model
more flexible. Elixir also supports macros. The combination of the
two features means that domain specific languages (DSLs) are easy to
develop in Elixir. [Shows example of a test case DSL.] Macros also
support pattern matching.

	Extensibility

Elixir’s goal of extensibility is a direct critique of Erlang. This
is accomplished through the use of Protocols.

	Compatibility

Being compatible with existing Erlang tooling is an explicit goal of
Elixir. There is no conversion cost for calling Erlang from Elixir
and vice-versa.

Elixir works out of the box with existing code like OTP.

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Emerging Languages Camp

Visi: Cultured and Distributed

	Authors:	David Pollak (@dpp)

	Time:	5:10 pm - 5:50 pm

	Session:	https://thestrangeloop.com/sessions/visi-cultured-distributed

	Link:	http://visi.pro/

In a lot of fields there’s a tension between compatibility and
innovation: how much do you do that’s comfortable and familiar, and
how much do you try to push the bounds of what can be done.

[Demonstration of Mesa.]

[Demonstration of Visi.]

Visi delineates computing modes: sinks (output), sources (input), and
references. Things that don’t have side effects can be freely moved
around. The delineation means there’s a clear place to check if there
have been changes, and check for serialization safety.

Visi allows you to write a Markdown document with prose and model
interleaved. Just write the document as Markdown and put your Visi
code in fences.

[This sounds a lot like Python docstrings, and the way Zope was using
them during the 3.X days.]

Visi has full type inference, so it won’t display prompts for the
values until it can infer what the types should be.

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

Monday

	In Memory Databases

	Monad examples for normal people

	Functional Design Patterns

	A Type Driven Approach to Functional Design

	A Whole New World

	The High Order Rubyist

	Building an Impenetrable ZooKeeper

	Principles of Reliable Systems

	Engineering Elegance: The Secrets of Square’s Stack

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Monday

In Memory Databases

	Authors:	Michael Stonebraker

	Time:	9:00 am - 9:50 am

	Session:	https://thestrangeloop.com/sessions/in-memory-databases-the-future-is-now

	Link:	http://voltdb.com/

VoltDB: Not Your Father’s Transaction Processing

“It’s a pleasure to be here, because I can look out and there’s no one
in the audience in a suit.”

The buzzword du jour in research is “big data”. The standard marketing
around big data is that I have too much, it’s coming too fast, or from
too many places. He’s focusing on the aspect of “too fast”, and high
velocity ingest.

Transaction processing 30 years ago was highly intermediated. 1000
transactions per second was considered a stretch goal (HPTS 1985). In
this traditional world, ACID was the gold standard, and the workload
was a mix of updates and queries. This was the bread and butter of
Ingres and Oracle.

In the last 25 years, the intermediaries have been removed, which has
led to a cooresponding increase in transaction volume. Transaction
processing now encompasses much more than just data processing; it
includes things like multiplayer games, social networking, ads, etc.
Retaining someone’s state in a multiplayer game is a huge transaction
processing problem. Ad placement isn’t just a TP problem, it’s a
real-time TP problem.

In addition to disintermediation, the rise of sensor tagging
(marathons, taxis, etc) is also adding to the volume of transactions.

High velocity ingest (really anything upstream from Hadoop) adds to
the volume, as well.

But the workload still looks about the same: a mix of queries and
updates, ACID required, but at two orders of magnitude the velocity
and volume.

Reality Check:

TP databases grow in size at the rate transactions
increase: everything you see at Amazon before you click “Buy” is non
TP. For most people, 1TB is a really big transaction processing
database. You can buy a terabyte of memory for about $50k (say, 65Gb x
16). Moore’s Law has eclipsed TP databases, so it’s possible to keep
your database in main memory.

Instrumenting the Shore DBMS prototype to understand performance, only
about 4% of work is actually useful work: buffer pools, locking,
latching, and recovery take the rest of the time.

To go faster than traditional systems, you need to focus on overhead
and get rid of all major sources of overhead. If you focus on better
B-trees, this only impacts about 4% of the path length. So don’t
bother focusing on the actual transaction. The real gains must come
from focusing on overhead.

So why give up on SQL to use a NoSQL system? Thirty years ago there
was a debate between people advocating SQL and people advocating
writing operations directly. SQL won because it could compile down
to those same operations. Betting against the compiler isn’t very
smart, and high level languages (like SQL) provide better code,
independence, etc. More subtly, stored procedures are good: they let
you move the code to the data instead of the other way around, which
is faster.

If you actually need consistency, using a system that doesn’t provide
ACID means you need to write it yourself. “That is a fate worse than
death.” And if you don’t need ACID today, can you guarantee you won’t
need it tomorrow? You need ACID if any part of your problem consists
of saying “Do both A and B, or neither.” Examples: funds transfers,
integrity constraints, or multi-record state.

“Eventual consistency” means “creates garbage”: non-commutative
updates, integrity constraints. “What happens if someone buys the last
inventory item and the primary fails before it replicates? When that
system comes back up, you could end up with -1 in inventory, which is
usually an illegal state.” Eventual consistency only works when you
can apply updates in any order and wind up with the same result.

NoSQL is fine for non-transactional systems with single record
updates. It is not appropriate for TP.

So how do you build a SQL-based, ACID-compliant system that performs
better than the legacy systems? You need a system that scales to large
clusters (one node solutions are no longer interesting), that has
automatic sharding, and that focuses on OLTP. By focusing on OLTP
problems you have, you can specialize and gain more speed. A
specialized hammer will be more effective than a generic system
attempting to be both a hammer and a screwdriver.

Storing data in main memory is great, and most main memory databases
can spill cold data to disk without significant overhead.

Eliminating the Write Ahead log (“Mohan kool-aid”): modern TP requires
high availability, which implies replication and fail over/fail back.
So there’s no need to recover from the Aries-style write-ahead log.
Yabut: what if the power goes out? The WAL is the “slow” option, so
you can do periodic check-pointing, with a command log. That log might
only use a stored procedure identifier + parameters, with group
commit, meaning you log less than a traditional WAL. Recovery time is
worse, but total cluster failures are rare [hopefully].

If you eliminate multithreading, you can go even faster, because
there’s no shared data structures to latch access on. For multicore
processors, your system can divide memory into n buckets, one per
core, and pretend you’re on separate CPUs.

Finally, eliminate row level locking.

VoltDB:

	Subset of SQL (getting larger)

	70X faster than legacy DBMS on TPC-C

	5-7X faster than Cassandra using VoltDB K-V layer

	Scales to 384 cores (biggest iron they could find)

Beware of vendors who:

	Use Multi-threaded

	Implements WAL

	Uses ODBC/JDBC for high volume

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Monday

Monad examples for normal people

	Authors:	Dustin Getz

	Time:	10:00 am - 10:50 am

	Session:	https://thestrangeloop.com/sessions/monad-examples-for-normal-people-in-python-and-clojure

	Link:	

Large codebases are copmlex. Technologies like Spring, EJB, AOP, etc
all had a common goal: make the code look more like the requirements.
If you write composable functions, your boss could write the code: it
reads like the real requirements. But in real life, you have to live
with NullPointerExceptions. You can write a bind or a pipe higher
order function that wraps some of this complexity.

The big picture goal is to write code that looks like the business
logic. The difference between an API and a DSL is how well thought out
and flexible it is.

Monads are a design pattern for composing fucntions that have
incompatible types, but which are logically composable.

[This talk moved very quickly and presupposed quite a bit of
knowledge. I was unable to keep up with notes, but reading the
Wikipedia page on Monads
(http://en.wikipedia.org/wiki/Monad_(functional_programming)) was
useful.]

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Monday

Functional Design Patterns

	Authors:	Stuart Sierra

	Time:	11:00 am - 11:50 am

	Session:	https://thestrangeloop.com/sessions/functional-design-patterns

	Slides:	https://github.com/strangeloop/strangeloop2012/raw/master/slides/Sierra-FunctionalDesignPatterns.html

Had the idea for the talk about six months ago at Clojure West. When
he went to write it, he realized that “design pattern” is sort of a
loaded term. People associate the term with the “Gang of Four”, which
“sounds like an ominous cult, or worse, a Senate committee.” GoF is
the product of its time, and described a lot of great starting points,
which people took and corupted. Some people say that design patterns
are an anti-pattern: that if your language needs them, your language
has a problem.

In 1996, Norvig gave a talk where he talked about how most of the
patterns in GoF are invisible or grossly simplified in dynamic
languages. But then goes on to talk about how at one point a
sub-routine call was also considered a “design pattern”.

Going to focus on patterns that show up slightly differently in
functional languages. And he’s not going to talk about Monads, even
though some of the patterns he’ll describe are monadic.

Monads are useful for writing programs, but he doesn’t find them very
useful for explaining them.

Architectural Patterns: describing an entire system

Design Patterns: describing a specific task/operation

Idioms: low-level patterns specific to a programming language

State Patterns

State/Event

	Derive state from previous state + input

	Need to recover past states (and perhaps inputs)

	Need to visualize intermediate states

This is the pattern of a single function that takes a state and an
event. Modeling your state this way is powerful – it allows you to do
things like take the starting point and all inputs and reduce to the
end state. Makes it a great pattern for testing systems. Allows you to
make assertions about the state of the system over time. You also have
a lot of flexibility about how you store the state: at one end of the
spectrum, you only store inputs/events, not state, since it’s derived.
One of the downsides is that every input/event in your system has to
be a data structure. That’s sort of the point, but it can add
complexity.

Consequences

	An input to the system can cause multiple events/side effects

	Generated events can trigger state change

One function takes state + input, and returns a sequence of events.

Another applies that sequence of events to state using reduce.

You need to decide if you’re going to allow recursive consequences.

A problem with this is that you can’t just compose the consequences to
get to the current state.

Data Building Patterns

Accumulator Pattern

	Large collection of inputs – maybe larger than memory

	Small or scalar result

One of the essences of functional programming: lazy sequences – map,
mapcat, filter, etc – and reduce.

This has a built-in assumption of ordered, linear processing, that
you’re going to deal with things one at a time.

Reduce/Combine

	Input is tree-like

	Divide and conquer approach

	Associative combination of intermediate results
(a + b) + c = a + (b + c)

Utilizes a reducer and a combiner function. The combiner provides a
way to “roll up” one level to a level “up”. Doesn’t assume linear
processing (hence the associative requirement). In some simple cases
(addition, for example), the reducer and combiner may be the same
function.

Recursive Expansion

	Build a result from primitives

	Abstractions are built in layers

	Recurse until there’s no more work

	Examples: macro expansion, Datomic transaction fns

A function takes an expander and some input, and calls expander with
input (and after the first call, the result of the previous call),
until the return value equals the input value.

Flow Control Patterns

Pipeline Pattern

	Some process with many discreet steps

	one execution path – no branching

	Each step has a similar “shape” – a map or record in Clojure

Because each step needs to take and return the same “shape” of data,
the code can wind up being a little longer. But the result is very
clear: you can easily see the steps that are being taken. And because
you have to work with the same shape of data, the resulting pipeline
is composable into other, larger pipelines

Wrapper Pattern

	Similar to the Pipeline

	Possible branch at each step

Instead of composing a list of functions (steps), you use higher order
functions that could do something before or after an individual step.

Because each step can do things before and after, it can become
difficult to reason about where something is happening.

Token Pattern

	An Operation may not have an identity

	But you may need to cancel it

So you wrap the operation with something that returns a “token” –
something that can cease the operation and get you back to your
original state. The scheduled thread pool in Java works this way.

Observer Pattern

	Register an observer with a stateful function

The observer could take the old and new state, along with either the
delta, the triggering event, or the container.

Strategy Pattern

	Many processes with similar structures

	Extension points for future variations

	This is a GoF pattern which starts to disappear in Clojure

Clojure protocols are an implementation of this. Another way to do
this is by passing around a map of the functions. This feels
functional, but it has some performance overhead: every invocation
requires a map lookup.

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Monday

A Type Driven Approach to Functional Design

	Authors:	Michael Feathers

	Time:	1:00 pm - 1:20 pm

	Session:	https://thestrangeloop.com/sessions/a-type-driven-approach-to-functional-design

Been thinking about how we design functional programs. It’s gained
ascendancy in the past 5-10 years, but you don’t hear people talk
about how you design those programs. This is in contrast to
ascendancy of OOP, when everyone had an opinion they were happy to
share.

Had this thought that the Haskell type signature was useful for
describing how to assemble programs. Wrote some Ruby code, and even in
Ruby he was adding comments to describe expectations that looked a
lot like Haskell type signatures. For example:

map :: (a -> b) -> [a] -> [b]

Describes the function map that takes a function as a parameter
that takes a and reduces to b; it can also take a list of “a” and
return a list of “b”. There’s no clear demarcation between input and
return, the return value just happens to be the last thing returned.

region 7 9 "expersexchange"

region :: Int -> Int -> String -> String

So region is a function that takes two indices and a string, and
returns another string.

Thinking about a line break algorithm in these terms. Describing the
steps in terms of types helped him understand the “shape” of the data.

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Monday

A Whole New World

	Authors:	Gary Bernhardt

	Time:	12:20 pm - 12:50 pm

	Session:	https://thestrangeloop.com/sessions/a-whole-new-world

	Link:	

An Editor

Layers
Overlaying orthogonal information
Diff layer
Crash layer

[I stopped taking notes. This was awesome, even if Gary is a liar ;)]

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Monday

The High Order Rubyist

	Authors:	Robert Pitts

	Time:	1:30 pm - 1:50 pm

	Session:	https://thestrangeloop.com/sessions/the-higher-order-rubyist

Functional programming in Ruby

So why bother? Ruby lets you write succinct code and easily create
DSLs. Unfortunately as you write larger systems, maintenance becomes
an issue. His theory is that by approaching problems more directly and
declaratively will help with this issue.

Ruby includes some batteries that get you started on this approach.
The Enumerable module includes common higher order functions. It
also includes some helpful destructing syntax.

Ruby also has some first-ish class functions that look a lot like
lambdas: blocks, procs, lambdas, [something else].

Ruby 1.9 added Proc.curry to support currying and partial
application.

Continuations previously had a bad reputation in Ruby – poor
performance and memory usage. callcc improves that performance.
Note that continuations may be removed from a future version of Ruby,
still under discussion

Tail call optimizations are available in Ruby 1.9. Not enabled by
default, so you can either recompile or pass Ruby configuration.

In addition to these built-ins, there are other attempts to add
functional properties to Ruby.

	Hamster

Similar semantics to core Ruby, except for some cases to address
[im]mutability.

	Stunted

Allows you to define bags of functions in a module, and then mix
those into other classes. Nice for composability.

	Ruby#Facets

Well tested and been around a while.

	Celluloid

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Monday

Building an Impenetrable ZooKeeper

	Authors:	Katheleen Ting

	Time:	2:00 pm - 2:50 pm

	Session:	https://thestrangeloop.com/sessions/building-an-impenetrable-zookeeper

	Slides:	https://github.com/strangeloop/strangeloop2012/blob/master/slides/Ting-BuildingAnImpenetrableZooKeeper.pdf?raw=true

ZooKeeper is the unsung hero, and a lot of time people don’t know that
it’s there until it’s down. Because ZooKeeper is so important, it’s
important to make it durable.

ZooKeeper is fairly stable, so more often the things that bring ZK
down are misconfigurations, not bugs.

ZooKeeper is a coordinator for distributed applications. It is
designed to remove the need for custom coordination code/solutions. ZK
is used by HBase, HDFS, Solr, Kafka, etc.

Misconfigurations are any diagnostic ticket that require a ZK/config
file change. These comprise 44% of tickets at Cloudera [eep!].
Typically ZK is straight forward to set up and operate, and issues
tend to be client rather than ZK issues.

A 3 ZK Ensemble consists of three ZK machines: one leader, two
followers. All three store a copy of the same data. This full
replication ensures durability.

Leader is elected at startup, changes are coordinated through the
leader, and clients talk to followers. Changes are accepted when a
majority of ZKs agree.

Common Misconfigurations:

	Too Many Connections

	ZK has a limited number of connections; defaults to 60 [per IP?]

	HBase clients have leaked connections in the past, so they have to
be closed manually

	Connection Closes Prematurely

Need to increase wait time for recovery. [Didn’t understand this
completely.]

	Pig Hangs Connecting to HBase

	Caused by Pig not knowing the location of the ZK quorum.

	This can be resolved with Pig10

	Client Session Time Out

	ZK defaults session timeout to 40s, while HBase needs a 180s
timeout for garbage collection.

	This will cause them to agree on the shorter session timeout

	HBase will begin to timeout under IO load, because it needs more
time

	This may also be caused by co-locating ZK with something IO
intensive like a DataNode or RegionServer

	ZK has relatively low IO requirements, but durability requires
that changes fsync before reporting as accepted.

	Clients Lose Connections

	The ZK transaction log is optimized for mechanical spindles and
sequential IO

	SSD provides little benefit to ZK, and suffers from latency spikes

	Unable to Load Database: Unable to Load Quorum Server

	If there is disk corruption, ZK will refuse to load

	If you have two other running ZK instances, you can safely wipe
the database and it will replicate from the other two when it
comes back up

	Unable to Load Database - Unreasonable Length Exception

	ZK allows a client to set data larger than the server can read
from disk

	ZK includes the metadata when calculating the size

	Increase the max size to work around

	This is a bug in ZK which will be fixed in a future release

	Failure to Follow Leader

	If your ZK nodes comes up and is not the leader and can not
contact the leader, it will not be able to restart

Because ZK operates by majority, recommend having an odd number of
servers in an ensemble: if you have 2 servers in an ensemble, and one
goes down, you’re down (1 is not a majority of 2). Recommend:

	1 if you only want coordination

	3 if you want reliability for production environments

	5 if you want to be able to take one down for maintenance

But more isn’t always better: more servers means you need to wait for
more votes in elections. You can use Observers to provide more
followers that do not participate in elections.

You can verify the configuration using zk-smoketest.

Best Practices

	Separate spindles for dataDir and dataLogDir – improves latency and
avoids competition

	Allocate 3 or 5 servers

	Run zkCleanup.sh via cron

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Monday

Principles of Reliable Systems

	Authors:	Garrett Smith

	Time:	3:30 pm - 4:20 pm

	Session:	https://thestrangeloop.com/sessions/lessons-from-erlang-principles-of-reliable-systems

Reliability

This is unsexy like the 1980s Automotive Quality Wars. The lesson from
the quality wars is that things that break suck. But things that keep
going are awesome. Awesome like the Terminator who keeps going after
getting shot in the face with a shotgun. People will spend money for
quality, and they will develop loyalties to things that don’t break.
They will avoid things that break (or that are perceived to break).

Reliability (quality) is central to the Erlang community, in large
part due to the [mythic] number of 9 9’s of uptime put forward by Joe
Armstrong. Erlang was a commercially motivated language, not
academically motivated, so quality and reliability had an associated
cost for the creators. Erlang came out of PLEX, another language
Ericsson designed. PLEX was a real time, very parallel language, but
it was very low level, and therefore very expensive to use. The idea
was to find or develop a new language that had an OS independent VM
and had great support for parallelism and concurrency. Erlang was the
product of this, and because of its motivations it prizes pragmatism
over purity.

Principles of Reliability

	Isolation

	Fault detection and Recovery

	Separation of concerns

	Black box design

	State management

	Avoid complexity

Isolation

The Erlang VM is designed to operate processes. You can kill
individual Erlang processes without impacting other processes on the
VM. We see isolation all around us in the physical world, sort of by
definition. So we need to think about how to apply the same ideas to
software and think about how to keep things isolation from one
another.

Fault Detection and Recovery

In order to recover from a failure, you need to be able to detect the
failure first. This isn’t as easy as it sounds, especially at the
thread level. When thinking about how to detect failure, you want to
detect this as quickly as possible to “fail fast”. Once the failure
has been detected, you need a strategy to recovery. Erlang addresses
this by “turning it off and on again” – restarting the piece of code
that registered the failure.

Separation of Concerns

Separation of Concerns is the principle of focusing on one thing, and
doing it well. [Cohesion, etc.] By keeping code focused, it’s easier
to reason about it, test it, and limit the scope for a change. This
also means that if something fails, the scope of failure is limited.

Black Box Design

Black box design is an approach to designing things where you treat
your components as an appliance. The appliances in your home may be
quite complex (washer, microwave, etc), but the interface it presents
is limited by design. Thinking about code as an appliance means you
try to make it easy to set up (just plug it in?), push the start
button, provide minimal controls, and reboot or replace to fix.

Erlang is effectively an “operating system” for your code. So you
write “systems”, and individual “programs” within that service handle
some specific concern.

State Management

Erlang doesn’t “hate” state, but it doesn’t like it very much. Messing
with data is costly, and as soon as state enters your application you
have to deal with additional complexity during recovery, failover,
repair, and synchronization. All of these are hard to get right. If
you can avoid state, you should, either by avoiding it completely, or
ensuring it’s someone else’s problem.

Avoid Complexity

Reducing complexity means there’s fewer edges to test. Things like
dependencies, hierarchies, resource sharing, and fear all are
indicators of complexity. Something simple is something reliable. And
if something isn’t completely obvious, spend some time making sure
someone else could understand it.

How to Do This

OS Process Isolation

	No shared memory

	Communicate via message passing

	Process termination (“fault”) detection

	Techniques: IO “servers”, 0MQ, TCP/HTTP

Actors

	Processes have overhead, and at some scales aren’t feasible

	Actors provide semantically isolated memory

	Inter-thread communication via message passing (queue inserts)

Fail Fast

	Avoid defensive practices – let things fail

	Let exceptions propagate and log them

	Use assertions – and leave them in!

	Exiting the process isn’t a bad idea if you’re running under a
supervisor

	runit, launchd provide process monitoring/supervision [speaker
recommends runit]

Think Small

	Narrow the scope as much as possible

	Aim for functional-style programming – average functions are four
lines long

	Think about a Micro SOA

	Avoid building for “the future”

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Monday

Engineering Elegance: The Secrets of Square’s Stack

	Authors:	Bob Lee

	Time:	4:30 pm - 5:20 pm

	Session:	https://thestrangeloop.com/sessions/engineering-elegance-the-secrets-of-squares-stack

@crazybob

As CTO of Square, solely focused on technology, not managing people.

Persistent Queues

Card processing has two phases:

	Authorization
Sets aside the funds for the merchant.

	Capture
“Commit”

This actually works pretty well for mobile: you enter the amount and
the authorization occurs. After the signature screen, you can capture
(commit). Since the mobile network is inherently faulty, capture
occurs in the “background” – capture is queued, and it will
eventually be handled.

This gives the feeling of responsiveness, but this is obviously
critical code, so what happens if it fails? Their answer is
persistent queues. SQLite was an open, but felt like a mismatch for
building a queue (b-tree vs fifo, etc).

Needed atomicity and durability. Began by investigating what you get
from the filesystem. Renaming is atomic, fsync is durable (unless your
hardware lies to you), but there were questions about whether or
not segment/block writes are atomic. After investigating, it appears
that you can rely on them being atomic.

There are a few traditional strategies for implementing this sort of
application:

	write / fsync / rename / fsync (note you need both fsyncs to avoid
operation re-ordering where you’d wind up with an empty file)

	rollback log

	journal

Solving a specific use case (FIFO queues), so built and open sourced
Tape (http://github.com/square/tape/) to accomplish this.

Server Stack

Original stack written using Ruby, but ran into scalability problems.
Ruby requires one process per request, and isn’t great about sharing
memory. This limits you to roughly 20-25 request workers per machine,
which isn’t great for a high volume transaction processing.

Tried using JRuby to take advantage of better concurrency support, but
many of the underlying libraries weren’t built for concurrency. All
the core payment processing code now uses Java.

The port to Java began about 1.5 years ago. Bob spent the previous
five years at Google, who has their own proprietary JVM stack. In
addition, Bob had been on Android for 3 years, so he was out of touch
with the latest and greatest. What he found:

	One Repository for all the Java code
	Don’t version internal dependencies, everything builds against
master

	This means that if you want to change something low level, you
also have to fix everything that uses it

	One JAR for deploying the application
	Hot deployment of WAR files often has problems with memory leaks

	Instead of an application server, they use a single JAR that has a
main method that runs an embedded server.

	Typical way to do this is unpacking and repacking into a single
JAR.

	OneJAR (available on SourceForge) actually allows you to do nested
JARs. This speeds up the build and delays when you run into the
64000 file limit per JAR

	This does mean you can’t do classpath scanning (but you probably
shouldn’t be anyway).

	You can also do self-executing JARs

	Java Stack
	Jetty

	JAX-RS (Jersey) – higher level abstraction over Servlets

	JPA (Hibernate)

	Guice

	Dropwizard – they don’t use it, but probably going to migrate
there.

Rethinking Publish / Subscribe

Lots of messages to pass around; i.e., payment processing needs to
tell a capture system, a settlement system, risk systems, etc about
things that happen. The standard approach would be to use a messaging
server for that, with reliability implemented with additional
messaging servers. The producer and consumer are probably already HA
systems, so this adds another cluster to deploy and maintain.

Instead of messaging, they’re using a message feed based system.

	Client asks for all records

	Server responds with the records and current version

	Later, Client asks for the delta since the last version it saw

	Server responds with delta

Requires:

	Immutable sequence of events

	Total ordering

	Centralized server

Benefits:

	Stateless

	Fewer moving parts

	Bootstrapping for free

Further ideas:

	Partitioning feeds

	Caching and replicating feeds

	PubSubHubBub

Dependency Injection

Guice is a dependency injection container developed at Google in 2006.

Guice uses a DSL written in Java, which means that for a tool to
understand your Guice configuration, it needs to execute your module.

If they could go back and do it again, maybe code generation would be
a better way to go than a DSL. Java has an annotation processing API
(JSR-XXX), which Bob served on the expert group for, which hasn’t
gained much adoption.

Guice also has provider methods, which if they had existed in Guice 1,
might have obviated the need for the binder API.

Developed Dagger (http://github.com/square/dagger), which applies the
learnings from Guice for better dependency injection. Use of code
generation means that many errors are compiler errors instead of run
time errors. Resulted in increased startup speed for their Android
applications.

Engineering blog: http://corner.squareup.com

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

Tuesday

	Computing Like the Brain

	Behind the Mirror

	Apache Cassandra Anti-Patterns

	Programming by Voice: Becoming a Computer Whisperer

	Eventually Consistent Data Structures

	Expressing Abstraction - Abstracting Expression

	Taking Off the Blindfold

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Tuesday

Computing Like the Brain

	Authors:	Jeff Hawkins

	Time:	9:00 am - 9:50 am

	Session:	https://thestrangeloop.com/sessions/computing-like-the-brain

Inspired by an article by Crick who wrote about the brain, saying that
we’re missing a broad framework to interpret neuroscience data; it was
a data rich but theory poor field. Difficult getting a gig doing
neuroscience full-time, which is why he wound up doing Palm and then
Handspring.

Gave himself two tasks:

	Discover operating principles of the neocortex

	Build systems based on these principles

Start with anatomy and physiology, which are constraints on how the
theoretical principles could work, then you develop some principles,
and model them in software. Eventually that software gets written to
silicon. There’s tons of papers published on A&P of brain that are
unassimilated by theory.

The neocortext is a predictive modeling system. It’s responsible for
generating and processing our senses. And senses are not single sense”
they’re arrays of senses: your retina is an array of a million
sensors, streaming data in at an incredible rate. The brain is born
with incredible capacity, but no knowledge. So the brain has to build
a model of the world. When you see something – like someone speaking
on a stage – your brain is invoking the model and making predictions
about what will happen next, and using those to detect anomalies and
deltas. And finally it generates actions, like speech. The brain is
not a computing system, it’s a memory system.

Top three principles of the neocortex:

The neocortext is a hierarchy: sensory information bubbles up the
hierarchy, and then signals are pushed back down. And it’s interesting
because it appears that everything in the neocortex works the same: a
single algorithm for sight, hearing, touch.

The primary memory in the neocortext is sequence memory. When you
speak, you’re playing back things you’ve learned in time sequence. And
when you hear something you’re processing a time sequence of inputs.
Even vision works this way.

The brain uses sparse distributed representations. At any given time
only a few cells are used.

Computers typically use dense representations: a few bits, using all
combinations of 1s and 0s. The individual bits don’t really mean
anything – the representation is given meaning by the programmer.
Sparse distributed representations (SDRs) have thousands of bits at
minimum, with few 1’s, mostly 0’s. Roughly 2% are active at any time,
but each bit has semantic meaning. That meaning is learned, not
assigned. When you want to represent something in the brain, the brain
picks the top best matches of “bits” for that information.

SDR has some interesting properties: you can compare two SDRs, and if
they have shared 1 bits, they have semantic similarity. Because they
are sparse structures, this is unlikely to happen by chance. You also
don’t need to store all the bits (since they’re mostly 0), you can
store the indices to the positive bits. You can also sub-sample –
it’s mathematically demonstrate that it’s OK to only store the top 10
bits. Even if you have a false positive, it’s unlikely to happen, and
if it does, it’s going to be semantically similar (so not really a
false positive). Finally, if you take the union of a set of SDRs,
you can compare any new SDR’s positive bits to the set union’s
positive bits and accurately establish membership. Intelligent
machines will be built on SDR.

Sequence memory has properties that act as “coincidence detectors”. If
the same stimuli arrive at the same time, they have a large impact on
the cell body. If they arrive one after another, they do not. The cell
can “or” them together to determine when a coincidence occurs.

Cells become active from input from the world, and then form
connections to a sub-sample of previously active cells. That allows it
to predict its own future activity. Multiple predictions can occur at
once. Sequences of predictions are established using “layers” of cells
– with 40 active columns and 10 cells per column, you get 10^40 ways
to represent the same input in different contexts. This allows the
brain to understand the difference between “two”, “too”, and “to”.

To build an online learning system, you have to train on every new
input. If a pattern does not repeat, forget it. If it repeats you
reinforce it. For many years we thought of learning as the
strengthening of synapses. That happens, but we know today that
synapses grow (in a matter of seconds), so it’s more useful to think
of synapses as forming and unforming.

These models are being applied to predictive analysis. Today we take
in data and store it in databases, and then build models and
visualizations. The challenges are data preparation (velocity is too
fast), model obsolescence, and the lack of people who can do the work.
The future of this is taking data streams and feeding them to online
models which lead to actions. The requirements of that application are
automated model creation, continuous learning, [something else].

Grok is Numenta’s engine for acting on data streams. The product feeds
data streams through encoders to generate SDRs, feeds them to sequence
memory, predict anomalies, and generate actions.

Users create the data stream, and define the problem – what to
predict, how often, and how far in advance.

[Shows examples of Grok applications]

Predictions aren’t either right or wrong – there’s subtlety, and even
missed predictions (or things that happened that you didn’t predict)
can help train the system.

Future of Machine Intelligence

More theory that needs to be developed — sensory/motor integration,
attention, more hierarchy research. (People used to think there was a
motor “part” of your brain, but we now know that every part of the
brain has motor output.)

Today we’re building these models in AWS, but you can imagine in the
future you could build distributed hierarchies using distributed
sensors or networks, much like the brain is hierarchical.

Currently need to do lots of tricks to make this fast in software, but
talking to hardware companies about how they might make it faster,
cheaper, and lower powered. Interesting implications for memory, but
interconnects are a little challenging – chips aren’t good at lots of
connections like these have (but sub-sampling and sparsity might help).

The applications today are around prediction/anomaly detection. The
class applications that people think of are speech/language/vision,
but not sure that’s very interesting. The interesting thing to him is
building systems that can work faster than the brain.

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Tuesday

Behind the Mirror

	Authors:	Chris Granger

	Time:	10:00 am - 10:50 am

	Session:	https://thestrangeloop.com/sessions/behind-the-mirror-the-birth-of-light-table

	Link:	

In 1974 people at the MIT AI Lab were writing code using TECO – the
Text Editor and COrrector (actually “Tape” Editor, because that’s the
medium they were using). What made TECO interesting was that it wasn’t
an editor like we think about it – it was a language for text
manipulation. In the original paper for TECO they coined an interested
acronym – YAFIYGI: “You ask for it, you get it.”

One of the people at MIT thought like we might today – that this was
cumbersome. He visited the Stanford AI lab, and saw they had a
different way of editing text: WYSIWYG. Returning to MIT, this
individual – Stallman – begin writing macros on top of TECO to
create a more functional WYSIWYG editor. That became Emacs, and led to
a huge increase in usability.

Thirty five years later, he was hired as the program manager for
Visual Studio, eventually owning C# and VB. He was asked to think
about the future of the IDE, but the underlying question – how do
people use it now – didn’t have a satisfactory answer. He found no
one had done an end to end analysis of Visual Studio. They’d studied
individual new features, but not the product as a whole. Granger did a
usability study of Visual Studio. One interesting thing he found is
that the people who swear they don’t touch the mouse actually did
use it. They used it when they were reading the code, though, not
necessarily while writing it.

Granger was expecting to find that Visual Studio was too complicated,
that it’s too “noisy” (distracting). There was some evidence that this
was true, but no vocalized it: no one mentioned out loud that their
attention was divided or diverted. His conclusion is that they didn’t
vocalize it because they were too busy trying to do something else:
trying to keep the state of the program in their head. The primary
things they used were the editor, the explorer, and the debugger. This
felt really similar to the way things worked forty years before.

Granger set out to try and re-imagine the way tools work. But the
first work wasn’t Light Table. He started learning Clojure, a lisp
that runs on the JVM. Learning/using Clojure taught him that the
important thing wasn’t keeping the entire program in their head, it
was abstracting away enough of the program to keep one part in their
head. “Great programmers are able to create and traverse
abstractions.” Programmers deal with abstraction – there are
frameworks for everything, and we as programmers create and consume
abstraction. Programmers learn about abstractions by “poking” at them.

Wrote a prototype of Light Table in six days while he was on vacation,
without a network connection. People responded well, and asked to put
it on Kickstarter [really?!], and Granger expected it to fail. Instead
it raised over $300,000. His conclusion: people agree we’re in the
dark, and we’re disconnected from the systems we’re building.

[Demonstrates using Light Table to build a tool for showing git
status and modeling abstractions from a game he’s been writing with
his brother.]

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Tuesday

Apache Cassandra Anti-Patterns

	Authors:	Matthew Dennis

	Time:	11:00 am - 11:20 am

	Session:	https://thestrangeloop.com/sessions/apache-cassandra-anti-patterns

	Slides:	https://github.com/strangeloop/strangeloop2012/blob/master/slides/Dennis-ApacheCassandraAntiPatterns.pdf?raw=true

Don’t run C* on a SAN. Cassandra was designed for commodity hardware,
so it didn’t really plan for SAN/high performance hardware. It’s not
only unnecessary, it actually performs worse on SANs than it does on
commodity hardware. C* uses (un)coordinated IO, so each node assumes
it has local disk and attempts to maximize the bandwidth it uses. If
you try to use a SAN, you wind up hammering your SAN.

Cassandra uses a commit log used for recovery; putting it on the same
volume as the data directory causes problems because they have
conflicting IO patterns. Commit logs are 100% sequential appends, but
the data directory is usually random reads. The commit log is very
sensitive to other processes moving the disk head. This problem only
shows up under load, so it’s sometimes difficult to find when testing.

Oversize JVM heaps are an issue – 4-8G is good, 10-12 is fine
(“correct” or “not bad”), 16GB is the max. Greater than 16GB is a
problem, as is setting the JVM heap to the same size as the RAM on the
box. This is due to increasing “GC suckage”.

Scheduled repairs should be run with “-pr”. This prevents it from
communicating work to other nodes, therefore reducing the work load
from duplicated work.

C* requires a lot of file handles, so the common default of 1024 is
absolutely not sufficient. This does not show up in testing, even
when testing with large datasets. It shows up with load spikes, and
fails in unpredictable ways. 32K-128K is common.

Putting a load balancer in front of C* is completely unnecessary and
only adds another point of failure. The clients will usually balance
between the available nodes on their own without this.

Sometimes people try to restrict clients to a single node. This
actually takes work, and causes problems. Don’t do it.

Having an unbalanced ring used to be the number one problem
encountered. An unbalanced ring leads to hotspots on the node with a
larger range. OPSC automates the resolution of this with two clicks,
even across multiple data centers. Related to this, always specify
your initial_token instead of letting C* pick for you. The initial
token specifies where in the range of 0 to 2^127 the node sits.

The Row Cache is a Row Cache, not a Query Cache, Slice Cache, or any
kind of Cache. Asking for less than the entire row requires
deserialization of the cached row to pick out the pieces you want,
working against the Row Cache. If you ask for the entire Row, it will
use the cached version that’s stored outside the JVM (which means you
need to take it into account when sizing memory for the machine). If
you turn on the Row Cache, ask for the entire row. Related, large
(2GB) rows are still a problem for the cache.

If you think you need the Byte Ordering Partitioner (formerly Order
Preserving Partitioner), you probably don’t. [He didn’t say why, just
that it’s a big problem.]

Batches are set in a single message and must fit in memory on both the
client and server. This makes unbounded batches a real problem. The
best batch size is an empirical exercise based on your specific load,
hardware, data, etc.

Rotational disks require seek time – and Cassandra was designed for
them. 5ms is a fast seek time, but remember that that’s hard overhead
for your queries. SSDs solve this, but remember that this is overhead
on top of the software when you use rotational disks. Note that you
can totally run C* on consumer SSDs, doesn’t need “Enterprise” SSD.

C* usually deals with Big Data, so a 32 bit JVM usually doesn’t work.

If you’re running C* on AWS, EBS Volumes are problematic. They have
nice features, but they’re unpredictable. A better approach is
striping ephemeral drives and spinning up new nodes when one fails.
It’s not clear whether provisioned IOPS EBS are a good fit.

At this point your should be running a Sun^WOracle JVM – r22 or
later. Some people are successfully using OpenJDK, but it hasn’t been
well tested.

Super Columns have 10-15% overhead for both reads and writes: the
entire super column needs to be held in memory. Most C* devs dislike
them.

DataStax offers a free version of their Ops Center – no excuse not to
use it.

http://slideshare.net/mattdennis

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Tuesday

Programming by Voice: Becoming a Computer Whisperer

	Authors:	Tavis Rudd

	Time:	11:30 am - 11:50 am

	Session:	https://thestrangeloop.com/sessions/programming-by-voice-becoming-a-computer-whisperer

	Link:	

Wants to demonstrate how he programs using voice. He used dictation a
few years ago to escape RSI, but it’s now a serious technology you can
use even if you don’t use RSI.

[Demonstrates writing Clojure – in Emacs – by speaking into a
microphone.]

[Demonstrates writing Emacs Lisp by speaking.]

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Tuesday

Eventually Consistent Data Structures

	Authors:	Sean Cribbs

	Time:	1:00 pm - 1:50 pm

	Session:	https://thestrangeloop.com/sessions/eventually-consistent-data-structures

	Link:	

Works one Riak, an eventually consistent data store (which some people
may call a database). Voldemort and Cassandra are also eventually
consistent. Riak is not ACID compliant, as we heard yesterday.

We have lots of duels/duals in CS – OOP v Functional, etc. The
duel/dual of safety vs liveness was defined my Lamport in 1977 in
“Proving the Correctness of Multiprocess Programs”. Safety means
“nothing bad happens” (partial correctness), where liveness means
“something good eventually happens” (termination). Forcing or
encouraging one property will reduce the other. Peter Bailis talked
about this in his blog post [http://www.bailis.org/blog/safety-and-liveness-eventual-consistency-is-not-safe/], “Safety and liveness: Eventual
consistency is not safe”. It’s not safe by itself.

With Eventual Consistency, you have multiple independent actors who
are replicating data amongst themselves with loose coordination (for
both reading and writing). They also have convergence – moving
towards a single shared state. If you don’t have convergence, you
don’t necessarily have inconsistency, but you definitely don’t have
eventual consistency. Unlike ACID systems, EC systems do not have
total ordering of events. [This is a problem for some people.]

So what do you do about consistency when there’s no clear winner?
Throw one out? Keep both? Cassandra throws one out, Riak and Voldemort
raises conflicts (“siblings” in Riak). So what do you do in this
state? Semantic Resolution – using domain specific business rules to
resolve – is the most obvious approach, but in practice it can be
really hard.

“Ad hoc approaches have proven brittle and error prone.”

Conflict Free Replicated Data Types

Instead of opaque data types/blobs in your data store you have useful
abstractions. And because we’re in a replicated environment, you have
multiple independent copies. They’re conflict free because they
resolve automatically toward a single value. Described in the paper
“Logic and Lattices for Distributed Programming”. These structures are
rooted in the theory of monotonic logic.

Bounded Join Semi-Lattices

<S, f, t>

S is a set – possibly unbounded – of all possible values. t is a
member of S [less than all other values?]. And f is a function describing
the least-upper bound (join/merge) on S. This provides a partial
ordering for the values of S.

[Slides show lset and lmax lattices]

Lattices give us determinism in how we merge our conflicts – there is
only one way to merge.

Another paper, “A comprehensive study of Convergent and Commutative
Replicated Data Types”, also provides some excellent information.

Two flavors of CRDTs:

	Convergent

The data you’re transmitting is the state; weak messaging
requirements

	Commutative

The data you’re transmitting describe operations. This requires
reliable broadcast, and causal ordering is sufficient.

Registers

A place to put yourself.

Concurrent updates to this type do not commute, so who wins? The two
strategies are the basic strategies used by Cassandra/Riak. Last Write
Wins (LWW-Register) used by Cassandra, Multi-Valued (MV-Register) used
by Riak.

Counters

Replicated integers with two operations: increment and decrement. An
operation based counter does not depend on delivery order (since
addition is commutative).

G-Counter is a Grow Only Counter, with a minimum value of 0. You keep
track of how each member of the cluster has counted.

PN-Coutners are similar, but you can go positive or negative. Again,
you keep track of state for each member, and use a function to derive
the actual value and resolve conflicts.

Sets

G-Set describes a set that can only be added to.

2P-Set (two phase set) describes a set where once something is removed
from the set, it can not be re-added. Two G-Sets composed into a
single type. One set describes the additions, the other the removals.
The “value” is the difference of the two sets.

U-Set – every value has a tag that indicates uniqueness

OR-Set (Observed Remove set)

Graphs

“Unfortunately they’re really complicated and error prone.” :)

Working with Graphs in a distributed environment you can run into
problems when two simultaneous additions create a cycle, potentially
violating a global invariant.

Use Cases

	Social graph – OR Set

	Web page visits – G Counter

	Shopping Cart – Modified OR Set

	“Like” button – U-Set (handles lots of concurrent writes)

Challenges

CRDTs are often inefficient, presenting a challenge for garbage
collection (which may require synchronization).

It’s also not clear who’s responsible for the synchronization. Some
client libraries implement this – mochi/statebox (Erlang),
reiddraper/knockbox (Clojure), etc – but the clients aren’t
participating in replication, so there’s some possible inefficiencies
and additional garbage created.

Riak will be implementing support for these on the server side.

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Strange Loop 2012 Notes

 	Tuesday

Expressing Abstraction - Abstracting Expression

	Authors:	Ola Bini

	Time:	3:30 pm - 4:20 pm

	Session:	https://thestrangeloop.com/sessions/expressing-abstraction-abstracting-expression

	Slides:	https://github.com/strangeloop/strangeloop2012/blob/master/slides/sessions/Bini-ExpressingAbstractionAbstractingExpression.pdf?raw=true

Part of the group of people who took JRuby from a “toy” to “real
application” level. Since then he’s done things from writing a YAML
parser to regex engines to re-implementing OpenSSL on Java (“that was
sort of complicated”). Since then been thinking about programming
languages.

When he started on JRuby he was working with Java during the day, with
a background in Lisp, and wanted something different. After JRuby he
began working on AIoki (sp?), a language experiment designed to
explore expressiveness.

Three questions come to mind when thinking about expressiveness:

	Why are new languages still being created?

	Is it worth choosing languages strategically?

	Does language actually matter?

Expressiveness is defined as effectively conveying thought or feeling.
Focusing on efficacy is a good place to start when evaluating
expressiveness. An expressive language is a language that makes it
easy to put my thoughts down into code without a lot of steps in
between.

An alternate definition is “a language construct is expressive if it
enables you to write an API that can’t be written without the
construct.” where “write” implies “use”, and where there’s some large
restructuring needed if the construct doesn’t exist.

But beware the Turing Tar Pit: where everything is possible but
nothing is easy [shows quote re: including buggy subset of Lisp].

A lot of thinking on languages cites Paul Graham’s Blub Paradox, which
states you have a scale with languages placed on it from least to most
powerful. If a programmer is using a language Blub roughly in the
middle of the scale, she can’t accurately evaluate the expressiveness
and power of a language higher up on the scale. She doesn’t have the
context or knowledge to do so.

Aspects of Expressiveness

(these are really dimensions – scales)

Regularity, readability, learnability (not sure if that’s actually
interesting for the question of expressiveness, and maybe it’s a
derivative of regularity and readability).

But the core is Essence vs. Ceremony. Everything I have to say not
related to my problem is Ceremony, and it’s in my way.

Precision vs. Conciseness: if you only want to say the things you need
to say, you also need to be OK with leaving out some parts that
influence other parts of the program (precision).

For his experiments he chose expressiveness over performance, and
unsurprisingly, the language ran quite slowly. And he thinks he made a
mistake: performance is a part of expressiveness. If your language is
concise and lets you write the essence of something, but runs too
slowly to be of practical use, it’s of limited value.

The theoretical side of expressiveness: “More expressive means that
the translation of a program with occurrences of one of the constructs
C to the smaller language require a global reorganization of the
entire program.”

Some people say that if you have “patterns” in your language, then
your language is deficient in some aspect of expressiveness. That’s in
contrast to the current thinking in the Java community, which states
that patterns are to be used to enhance understanding.

Practical Expressiveness

Abstraction is slightly more well defined in programming languages,
and in most cases abstractions add to the expressive power of a
programming language. There are several types of abstractions we use
day to day. Objects are one of the most common. And abstracting
classes of objects (esp in prototype based languages) is pretty
common, too (the joke about every Scheme programmer writing their own
Class system). Macros are an abstraction over the structure of code.

One thing you don’t see a lot of is abstracting the relationships
between things. There are some examples – Actors in Erlang, dataflow
variables in Mozart [?], and Java FX – but it’s the exception rather
than the rule. Spreadsheets are actually an example of this – cells
provide an abstraction over the relationships between values.

If your language doesn’t have a Macro facility, then all of the
abstractions that add expressiveness by hiding ceremony aren’t
available to you.

But not all macros are created equally. C-style macros are pretty
limited, and are little more than text replacement. Lisp macros, “AST
Macros”, aren’t actually AST macros. They operate on an S expression,
which is an abstraction of the AST. C++’s template system is a Turing
Complete template/macro system [yikes!].

Static typing actually is a way of expressiveness in a language, but
it’s double-edged.

Generics – and Type Classes in Haskell and Scala – are a powerful
feature of a language that are an abstraction in and of themselves,
but they also enable additional abstractions. This makes them pretty
interesting to study.

Abstractions in general are leaky. You see this clearly in
object-relational mappers. There are two classes of ORMs: those that
try to completely hide the fact that you’re operating against SQL, and
those that are closer to the metal. An example of the latter is
ActiveRecord in Rails. [My instinct is that Django’s is like this,
too.] The difference between these two approaches is that in systems
like Hibernate (an example of the former), you know how to solve a
problem using SQL, but you can’t get low enough to fix it.

Spolsky’s Law: “All non-trivial abstractions, to some degree, are
leaky.”

So Spolsky is probably right, but why are they leaky? Abstractions
are relative to what you’re trying to do: they have context. They’re
not absolutes. You can imagine different libraries approaching an
abstraction differently, depending on how they expect to be used.
Abstractions hide things, but only in one direction. You can think of
the leakiness as coming from the sides, issues that are orthogonal to
the one the abstraction was created against.

Linguistics

Simile is sort of a type class, it’s a way to add a new meaning of
something, or add abstractions.

Redundancy is something we see in natural language that we don’t see
in programming languages. If you count how many times “I have a dream”
appears in that speech, it’s a lot! And we do it with purpose in
linguistic language, unlike in programming languages where they
usually wind up being ceremony (see pre-Java 7
declaration/instantiation of parameterized types).

You also have a lot of different ways of saying the same thing in
natural languages. Sometimes that’s true in programming languages,
sometimes it’s not. Ruby and Perl let you say certain things in many
ways, while Python tends towards one “right” way. In natural language
you use different ways to say the same thing to provide additional
context, or expressiveness.

In linguistics we talk about syntax, semantics, and pragmatics. Syntax
is pretty understandable, and we know that semantics is how
identifiers relate to one another. Linguistic pragmatics is less well
known, and is how the context of something contributes to meaning, how
the context influences our choice of how to say something.

At the end of the day, natural and programming languages are about
communication. [We write for the next engineer.] We need to
communicate with team members as well as the computers that run our
code. We communicate indirectly to people paged in the middle of the
night due to a bug [:)].

One of the ways we can change the way we communicate is through
syntax. Syntax is actually more important for communicating than it is
for computers: you’ll find an entire PLT community that says syntax
doesn’t matter. Just as there’s syntactic sugar, there’s syntactic
salt (that which makes your code look bad), and syntactic sacharrrine
(which feels like overkill – too much sugar).

Design Principles

	One paradigm

	Minimal core/concepts

	Simplicity

	First Class functions

	Flexibility

	Skinnable type system

So how far away is the truly expressive language? It’s not clear, and
it’s not clear that expressiveness is always better. Maybe it’s
already here, just not evenly distributed. Expressiveness and
abstractions are relative, both to the people using it and the
subjects they’re being applied to. So maybe what you want is a
meta-expressive language. This is one of the reasons DSLs have become
so popular.

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	Strange Loop 2012 Notes

 	Tuesday

Taking Off the Blindfold

	Authors:	Bret Victor

	Time:	4:30 pm - 5:20 pm

	Session:	https://thestrangeloop.com/sessions/taking-off-the-blindfold

	Slides:	http://worrydream.com/LearnableProgramming/

Visible Programming: Designing a programming environment around how
human beings do human being things

Talk about programming environments: the software we use to create
other software.

The purpose of a programming environment is not to increase
productivity (implies “type faster”), but to see and understand what
the program is doing.

Five principles for the design of a programming environment

	Read the vocabulary – what the program says

	Follow the flow – what happens when

	See the state – what’s going on during execution

	Create by reacting – sculptors start with a lump of clay and
incrementally turn it into an element. The sculptor does not do a
single pass and produce an elephant.

	Create by abstracting – we have a tower of abstractions, and we
start at the bottom with a simple abstraction, and the move up. The
environment should provide the tools to do this.

Read the Vocabulary

If you look at a bit of javascript code, there’s a lot of questions to
answer before you can work on the code. What do the functions do? What
do these arguments mean? What’s the range and units? Right now the
answer is usually “look it up” or “look at the manual”. What if you
could hover over the parameters and see what they mean.

Make the meaning transparent, and explain in context.

[This talk was very visual, difficult to describe in notes.]

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	Strange Loop 2012 Notes

Index

 Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 _static/minus.png

search.html

 Navigation

 		
 index

 		Strange Loop 2012 Notes »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

README.html

 Navigation

 		
 index

 		Strange Loop 2012 Notes »

 This repository contains my notes from Strange Loop 2012 [https://thestrangeloop.com/archive/2012]. The notes
are recorded as reStructured Text, and can be built using Sphinx [http://sphinx.pocoo.org/] by
running make html.

You can read the most recent version online at
http://strange-loop-2012-notes.readthedocs.org/.

 © Copyright 2012, Nathan Yergler.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/plus.png

